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Status quo:  Decentralized data collections
Real output

• Census collects the “numerator”:  Revenue
• BLS collects the “denominator”:  Prices
• BEA does the division:  Q = P*Q/P

Non-simultaneous collection of price and quantity 
• Stratified surveys from small and deteriorating samples
• Mismatch of price and revenue data
• High cost and burden
• Difficulty of accounting for changes in products
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Measuring Real and Nominal Consumer Spending—
Current Architecture 
Census (nominal spending)

Data collection:
Retail Trade surveys (monthly and annual)
Economic Census (quinquennial)
Consumer expenditure survey (conducted for BLS)

Published statistics:  
Retail Trade (monthly and annual) by firm type
Retail Trade (quinquennial) by product class

BLS (prices)

Data collection:
Consumer Expenditure survey (used for spending weights), collected under contract 
by Census
Telephone Point of Purchase survey (purchase location)a

CPI price enumeration (Probability sampling of goods within outlets)

Published statistics:  
Consumer Price Index (monthly) by product class

BEA (aggregation and deflation)

Data collection:
Census and BLS data; supplemented by multiple other sources

Published statistics:
Personal Consumption Expenditure: Nominal, real, and price (monthly)
GDP (quarterly)
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Reengineered data for retail P and Q
Item-level transactions data
• Item-level data allows inferring price from sales and quantities
• Price, quantity and revenue measured

– Simultaneously
– At high frequency
– Universe (or large sample) of transactions
– With little lag
– With reduced need for revisions
– With granular information on location of sale (geography, store/online)
– Immediate accounting for changes in goods
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Devil in the Details
Transactions data much more readily available for retail than other 
sectors 

• Personal Consumption Expenditures (PCE) 68% of GDP
• Goods 31% of PCE
• Goods (less vehicles, fuel, and prescription drugs) 22% of PCE

Many conceptual and measurement issues need to be resolved before 
practical implementation in the statistical agencies
Continuity is official statistics is important
Changes in Price Index (e.g., CPI) methodology have powerful 
implications for policy:

• Monetary Policy:  Inflation a target for policy
• Fiscal Policy:  Indexation of Social Security benefits and tax brackets
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Current Agency Activities:  Today’s presentations

Census
• Evaluating use of point-of-sale data for measuring retail sales
• Addressing survey non-response 

BLS
• Multiple sources of big data being considered for CPI
• Some sources being implemented

Not (yet) re-engineering
• Using big data to replace/supplement existing 

surveys/enumerations
• Not yet integrating price and quantity measurement

7



Roadmap of analysis presented today
Objective is to explore alternative methods for measuring revenue, real 
revenue and prices that are derived from the same (item-level transactions) 
source data.
Exploratory exercises using scanner data for P and Q 
• Nielsen covers grocery stores and mass merchandisers

• More than 100 product groups and 1000 product modules (millions of products).
• Classify into Food and NonFood items

• Food nominal expenditures: Compare scanner data to Census surveys and Personal 
consumption expenditures for food (Scanner provides high frequency product detail)

• Food and NonFood prices indices: Compare scanner price indices (with and without quality 
adjustment) to BLS CPI 

• NPD covers general merchandise and online retailers
• NPD data have rich product attributes
• Explore hedonics vs. alternative methods (e.g., UPI) for quality adjustment
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Price indices adjusted for quality at scale  – Using same source 
data to measure revenue
Key challenge/opportunity:  Enormous Product Turnover
• 650,000 products per quarter from 35,000 stores
• Product entry and exit rates (quarterly)

• 9.62% (entry) and 9.57% (exit)
• Sales-weighted entry and exit rates  

• 1.5% (entry) and 0.3% (exit)
• Rates vary substantially across product groups
• Asymmetry in sales-weighted: “slow death” of exiting products

• Some of this entry/exit is substantive, other is marketing/packaging
Source:  Nielsen scanner data (Food and NonFood)
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Capturing product quality at scale: Alternative approaches
UPI:  Expenditure function approach using CES aggregators (Redding 
and Weinstein, 2018, 2019) 
• Capture product turnover with changing expenditure shares of new vs. old 

goods ௗ (Feenstra 1994)
• Extend to capturing quality/appeal change of existing goods ௗ

• Captures ALL of the demand residual for quality adjusted prices.

• Needs item classification/nesting (all goods within a nest have equal 
substitutability)

• How to do at scale?

• Requires estimation of elasticity of substitution for each nest.
• Requires defining common goods, entering and exiting goods 

• More complex than at first glance
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Capturing product quality at scale: Alternative approaches
Hedonic approach with transactions data (Bajari and Benkard 2005, 
Erickson and Pakes 2011, Bajari et al. 2019)
• Estimate hedonic function within product groups using relationship between 

P and attributes on period by period basis 
• Use predicted hedonic prices for entering and exiting goods
• Use chain weighting to continuously update weights
• Both of these approaches helps accommodate product turnover

• For 21st Century Implementation, Need item attributes at scale
• Bajari et al. (2019) provide guidance about machine learning methods that can be 

used at scale to: 
• Identify attributes from text and images 
• Use sophisticated nonlinear estimators to capture the relevant variation in a parsimonious manner 

for hedonic estimation.
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Unified Price Index (UPI) (Redding and Weinstein 2018, 2019)
• Start with CES preferences for a given product group:
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• Implies unit expenditure function (exact price index):

• ௧ are time-varying appeal parameters
• Normalization that keeps “average preferences” from shifting over time

• is elasticity of substitution, ௧ are all goods in t
• Applied to narrow product groups (e.g. “Soft Drinks” or “Video Games”)

• Assume Cobb-Douglas utility over product groups – may have nests within product groups
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Adjusting for quality via UPI 
CES Demand function:

All Goods
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 ଵ ௧ ௧, Doubled differenced equation with ଵ .

Can estimate via Feenstra (1994) with assumptions about correlation of double 
differenced demand and supply shocks along with heteroskedasticity

With estimate of can recover quality factors.  Need to keep track of product 
turnover and changing expenditure shares of common goods.
Critical issues:  ALL of demand shock included in product quality.  Level of Aggregation

௧
∗ is the expenditure share for common goods in period t-1 and t, 
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Unified Price Index (UPI) (Redding and Weinstein 2018, 2019)
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Key Issues:
• Magnitude of adjustment factors depend on elasticity of substitution for narrow group.

• ௧
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where ௧
∗ are common goods and ௧ are all goods in t.

• ௧
∗ is volatile for recently entered and goods about to exit.  ௗ sensitive 

to definition of COMMON GOODS.
• Intermediate step:  Only consider product turnover yields “Feenstra” index:

ௗ , where is the Sato-Vartia index 

RPI is Jevons Index
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Estimated Elasticities of Substitution by Product Group
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Nonfood

This implementation of UPI at quarterly frequency where COMMON goods are those present in t-1 and t.  
RW (2019) show that 𝐶𝑉ௗ is reduced substantially when COMMON goods are defined over LONGER HORIZON.

In practice, also some sensitivity to using Nielsen Consumer Panel vs. Nielsen Scanner.  Likely related to small ௧
∗ 17



Hedonics and transactions data
Following Bajari and Benkard (2005) and Erickson and Pakes (2011) hedonics regressions 
estimated every period using item-level data

௧ 
ᇱ

௧ ௧, where  is vector of characteristics 

Laspeyres Hedonic Index (LPH) given by
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where ௧
 is the period t estimate of the hedonic function and ௧ିଵ is the set of all goods 

sold in period t-1 (including exits).   Use predicted hedonic prices for entering/exiting goods.

Critical issues:  Requires measuring characteristics.  Omitted unobserved/unmeasured 
characteristics cause biases.  
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NPD item-level characteristics for Memory Cards
Quality improves over period; marginal value falls
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Alternative Price Indices Memory Cards

Correlations with UPI           Laspeyres                Feenstra         Hedonic (Laspeyres)   Hedonic (Paasche)  
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Open Questions:
• In principle, both UPI and hedonic approaches can be done at scale 

using item-level transactions data. 
• Both approaches accommodate product turnover and quality adjustment

• More research is needed:
• What is the relationship between quality adjusted price indices using these two 

distinct approaches?
• Are the UPI and hedonics likely to “converge” if UPI is based on nests defined by 

comprehensive attributes used to estimate hedonics?
• What do we learn about conceptual and measurement issues by examining the 

differences in the price indices generated from the alternative approaches?
• Can we use the alternative approaches for cross validation?
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